Polycyclic Heteroaromatics from Reactions of Acylbenzotriazoles with Aryl Isocyanates

Alan R. Katritzky,* Tian-Bao Huang, and Michael V. Voronkov
Department of Chemistry, Center for Heterocyclic Compounds, University of Florida, Gainesville, Florida 32611-7200
Peter J. Steel*
Department of Chemistry, University of Canterbury, Christchurch, New Zealand
katritzky@chem.ufl.edu
Received J une 26, 2000

N-Acylbenzotriazoles react with aryl isocyanates to form, depending on the type of acyl group, compounds based on five different classes of polycyclic heteroaromatics. Higher al kanoyl-, acetyl-, acetoacetyl-, aroyl-, and cinnamoylbenzotriazoles yield, respectively, derivatives of quinoline, pyrimidino[5,4-c]quinoline, benzo[b]-1,8-naphthyridine, phenanthridine, and indolo[2,3-b]quinoline by incorporating 3, 3, 4, 2, and 2 molecules, respectively, of the isocyanate per acylbenzotriazole molecule.

Introduction

Aryl isocyanates have been widely used for preparation of various heterocyclic compounds. ${ }^{1 a-g}$ Condensation of aryl isocyanates with aldehydes has provided short and efficient entries to diverse heterocycles. ${ }^{2 a, b}$ Previously reported condensations of isocyanates with carboxylic acid derivatives have afforded triazines, ${ }^{3}$ triazoles, ${ }^{4}$ pyrimidones, ${ }^{5 a, b}$ pyridones, ${ }^{6}$ and some other heterocycles. ${ }^{6,7 a, b}$ We now report condensations of aryl isocyanates with five distinct types of N -acylbenzotriazoles to provide synthetic approaches to quinolines, pyrimidino[5,4-c]quinolines, benz[b]-1,8-naphthyridine, phenanthridines, and indol o[2,3-b]quinolines and compare our results with those previously reported.

Results and Discussion

Quinoline Synthesis. 1-Alkanoylbenzotriazoles 1a,b (1 equiv) heated neat in the presence of an aryl isocyanate (3 equiv) in a sealed tube for 24 h gave quinolines $\mathbf{2 a}$ and $\mathbf{2 b}$ in 86 and 83% yields, respectively (Scheme 1). The structure of $\mathbf{2 a}$ was confirmed by X-ray crystal-

[^0]Scheme 1

lography (Figure S1), and that of $\mathbf{2 b}^{1 \mathrm{~b}}$ was assigned by analogy and by spectroscopic data comparisons. In the X-ray structure of $\mathbf{2 a}$, the ring of the C2-anilino substituent is approximately coplanar with the quinoline ring, whereas the C4 substituent is approximately orthogonal to it. The nature of substituents R^{1} and R^{2} did not significantly influence the yields of such quinolines, except 1-benzotriazolyl-1-carbonyl-3-chloropropane (1c, $\mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$) on heating with tolyl isocyanate gave N -phenyl-2-pyrrolidone and no quinoline product. ${ }^{8}$ Quinolines of type 2 were previously prepared by heating aniline and diethyl malonate ${ }^{9 a}$ or N -acetylanthranilates ${ }^{9 b}$ in hexamethylphosphoric triamide (HMPT) but only in

[^1]
Scheme 2

1c
5

	\mathbf{R}^{1}	Yield
5a	H^{2}	66%
5b	CH_{3}	68%

5b $\mathrm{CH}_{3} \quad 68 \%$

5% yield for $\mathrm{R}^{1}=$ alkyl. For $\mathrm{R}^{1}=\mathrm{H}$ the yield of $\mathbf{2}$ was $17-70 \%$ depending on the nature of R^{2}.

Although it is known that some benzotriazole derivatives extrude nitrogen to form quinolines, ${ }^{10 a-e}$ structures $\mathbf{2 a}$ and $\mathbf{2 b}$ clearly excluded the possibility of the quinoline ring arising from the benzotriazole moiety. The mechanism of the conversion $\mathbf{1} \boldsymbol{\rightarrow} \mathbf{2}$ likely involves the ketene derived from the 1-acylbenzotriazole ${ }^{11}$ reacting with the carbodiimide ${ }^{12} 4$ formed from two molecules of the isocyanate. The resulting 4-quinolone $\mathbf{3}$ apparently reacts further with another molecule of isocyanate to yield the observed product 2. ${ }^{13}$ These intermediates are different to the imine or enamine species which were suggested earlier as intermediates in condensations of aldehydes with isocyanates. ${ }^{2 a, b}$ Our mechanistic speculations are supported by the facts that (1) the corresponding 1-benzotriazolyl imines ${ }^{14 a, b}$ failed to produce quinolines under these reaction conditions and (2) the reaction of $\mathrm{N}, \mathrm{N}^{\prime}$ -bis(4-methylphenyl)carbodiimide with 1-butyrylbenzotriazole (1a) afforded 3-ethyl-7-methyl-N²-(4-methyl-1,4cycl ohexadien-1-yl)-N ${ }^{4}$-(4-methylphenyl)-2,4-quinol inediamine (2c) in 76\% yield (Scheme 1).

Reactions $\mathbf{1} \rightarrow \mathbf{2}$ are somewhat similar to the direct syntheses of quinoline systems from aryl isocyanates by

[^2]reacting them with carbonyl compounds, ${ }^{2 a, b}$ enamines, ${ }^{1 e}$ imines, ${ }^{15}$ and other compounds. ${ }^{1 \mathrm{~b}, 16}$ However, reactions $\mathbf{1} \rightarrow \mathbf{2}$ offer a higher degree of functionalization as well as mechanistic diversity.

Pyrimidino[4,5-b]quinolines. We found that 1-acetylbenzotriazole 1c, when heated with an excess of $\mathrm{C}_{6} \mathrm{H}_{5}$ NCO or $\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{NCO}$ in a sealed tube at $210{ }^{\circ} \mathrm{C}$ for 24 h, gave pyrimidino[5,4-c]quinolines 5a and 5b in 66\% and 86\% yields, respectively (Scheme 2). The structures of compounds 5a and 5b were determined by X-ray crystallography (Figure S2). The structures and conformations of these two molecules are very similar, and in each case, the NH hydrogen of the anilino substituent is involved in an intramolecular hydrogen bond to the nearby carbonyl oxygen. We believe that mechanistically the first steps in this reaction are very similar to the transformation $\mathbf{1} \rightarrow \mathbf{2}$ discussed above and probably give 3. The reaction then proceeds via the formation of 2d followed by reaction with two more moles of ArNCO. The 3-position in $\mathbf{2 d}$ is somewhat nucleophilic and forms another pyrimidine ring under the reaction conditions. The GC/ MS of the reaction mixture indicates the presence of molecular ions for 5a and 5b.

Previously, compounds of type 5 were available via Wittig reaction of isocyanates with phosphorus ylides derived from bromoacetic esters. ${ }^{7 \mathrm{~b}}$ This earlier method gave 5 mixed with other products: our direct condensation of isocyanates with 1-acetylbenzotriazole 1c affords the pyrimidino[5,4-c]quinolines 5a as a 6:1 mixture with 6 and $5 \mathbf{b}$ as the only product in 66% and 68% yields. Curiously enough under identical conditions $\mathbf{1 h}$ displayed just the opposite selectivity yielding 6 as the only product. This quite remarkable difference between chemical behavior of benzotriazolyl and 5,6-dimethylbenzotriazolyl moieties suggests more complex mechanism and their intimate involvement in it.

The structure of 6 was confirmed by X-ray crystallography (Figure S3). Once again the NH group is

[^3]Scheme 3

involved in an intramolecular hydrogen bond to the adjacent carbonyl oxygen.

Benz[b]-1,8-naphthyridine. Acetoacetyl benzotriazole 1d when heated with an excess of phenyl isocyanate gave benz[b]-1,8-naphthyridine 7 in 83\% yield (Scheme 3). The mechanism of formation of benz[b]-1,8-naphthyridine 7 is more complex and appears to involve more steps than the formation of quinolines $\mathbf{2}$ and 5. A plausible mechanism depicted in Scheme 3 involves the formation of intermediate 8, which is then transformed into imine species 9 . The intermediate 9 reacts further with isocyanate to form the intermediate 10, which upon annulation with formal loss of aniline (isolated from the reaction mixture in the form of the $\mathrm{N}, \mathrm{N}^{\prime}$-diphenylurea) followed by further reaction with another molecule of isocyanate affords benz[b]-1,8-naphthyridine 7.

This method is advantageous in comparison with the earlier reported synthesis of benz[b]-1,8-naphthyridines from 2-chloroquinoline-3-aldehyde in 22-59\% yields. ${ }^{17}$

Phenanthridine. 1-Benzoylbenzotriazole $\mathbf{1 e}$ readily reacts with 2 equiv of p-methoxyphenyl isocyanate to afford phenanthridine 12 in 82\% yield (Scheme 4). ${ }^{1 \mathrm{~g}, 18 \mathrm{a}, \mathrm{b}}$ Compound 14 was similarly obtained in 43% yield from 1-(2-thiophenoyl)benzotriazol e derivative 1f. In contrast, 1-(2-furanoyl)benzotriazole afforded the corresponding 1-imidoylbenzotriazole derivative. The structure of 12 was established by X-ray analysis (Figure S4), while that of 14 was assigned from spectroscopic data. Compound 12 crystallizes in the monoclinic space group $\mathrm{P} 2_{1} / \mathrm{c}$, with two independent molecules in the asymmetric unit, which differ only in the conformations of the anisyl rings.

Since 1-acylbenzotriazoles 1e,f lack α-protons, the formation of ketenes or their amino analogues is excluded. Thus, the formation of quinoline rings in $\mathbf{1 2}$ and 14 proceeds via a different mechanism. It most likely involves formation of the corresponding imidoylbenzotriazole species $\mathbf{1 1}$ and $\mathbf{1 3}$ followed by a thermal frag-

[^4]Scheme 4

Scheme 5

mentation of the benzotriazole moiety ${ }^{10 d, e}$ and formation of the pyridine ring within $\mathbf{1 2}$ and 14.
This approach potentially provides access to a wider range of substitution along with good yields and is an advantageous alternative to previously reported condensations of aryl isocyanates with anthranilic acid. ${ }^{1 a}$
Indolo[2,3-b]quinoline. When 1-cinnamoylbenzotriazole $\mathbf{1 g}$ was heated with 2 equiv of phenyl isocyanate, indolo[2,3-b]quinoline $\mathbf{1 5}^{19}$ was isolated in 59% yield (Scheme 5). The structure of $\mathbf{1 5}$ was established by X-ray analysis (Figure S5). In this case, the NH hydrogen is involved in an intramolecular hydrogen bond to the quinoline nitrogen. This rearrangement most likely proceeds via the initial formation of the corresponding imidoyl benzotriazole derivative 16 followed by electrocyclic cyclization to yield 17. Finally, thermal decomposition of the benzotriazolyl moiety in 17 and cyclization of the resulting radical 18 affords product 15. There are mechanistic similarities between this reaction and some of those earlier reported. ${ }^{19}$ H owever, in contrast to Wang's synthesis of indolo[2,3-b]quinoline, our approach is based on a more readily accessible starting material and is also two steps shorter.
In conclusion, we have demonstrated that five distinct types of N -acylbenzotriazoles can react with isocyanates to provide synthetic approaches to quinolines, pyrimi-
dino[5,4-c]quinolines, benz[b]-1,8-naphthyridine, phenanthridines, and indolo[2,3-b]quinolines, respectively.

Experimental Section

General Methods. Melting points were determined on a capillary melting point apparatus equipped with a digital thermometer. NMR spectra were taken in CDCl_{3} with tetramethylsilane as the internal standard for ${ }^{1} \mathrm{H}(300 \mathrm{MHz})$ or sol vent as the internal standard for ${ }^{13} \mathrm{C}(75 \mathrm{MHz})$. THF was distilled from sodium/benzophenone under nitrogen immediately prior to use. All reactions with air-sensitive compounds were carried out under an argon atmosphere. Column chromatography was conducted with silica gel 230-400 mesh.

General Procedure for the Preparation of Compounds $\mathbf{1 a}-\mathbf{d}, \mathbf{f}$. To a solution of 0.1 mol of acyl chloride and 11.9 g of benzotriazole in 300 mL of methylene chloride was added a mixture of 11.0 g of triethylamine and 50 mL of methylene chloride at $0-20^{\circ} \mathrm{C}$ dropwise over 30 min . The mixture was refluxed for 4 h , cooled to room temperature, and washed with 100 mL of water, 50 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}, 50 \mathrm{~mL}$ of 10% NaHCO_{3}, and 100 mL of water. The organic layer was dried over anhydrous MgSO_{4}, and the filtrate was diluted with hexane (about 60 mL) and was kept at $0^{\circ} \mathrm{C}$ overnight. The desired product was isolated as col orless crystals. The analytically pure acyl-1-benzotriazoles were obtained by recrystallization from 2-propanol.

Compounds $\mathbf{l e} \mathbf{e}$ were prepared according to published procedures. ${ }^{19 a, b, 20}$

General Procedure for the Preparation of Compounds $\mathbf{2 a} \mathbf{a}, \mathbf{5 a}, \mathbf{b}, \mathbf{6}, \mathbf{7}, \mathbf{1 2}, \mathbf{1 4}$, and 15. The mixture of 3 mmol of 1 -acyl-benzotriazole and $5-10 \mathrm{mmol}$ of aryl isocyanate was heated at $210{ }^{\circ} \mathrm{C}$ for 24 h (unless mentioned otherwise) in a 50 mL sealed tube and then cooled to room temperature. The reaction mixture was subjected to column chromatography with hexane/ethyl acetate ($6 / 1 \sim 10 / 1$) to give the corresponding product. Analytically pure product was obtained as yellow crystals by re-crystallization from methylene chloride-ethanol mixture.

Butyryl-1-benzotriazole (1a): 92\% white needles; mp 62$63^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.08(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 1.82-1.90(\mathrm{~m}, 2 \mathrm{H})$, $3.40(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.60(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.75(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=7.2 \mathrm{~Hz}), 8.18(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\delta 13.3,17.0,36.6,113.7,119.7,126.0,130.3,145.3$, 172.0. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 63.48 ; \mathrm{H}, 5.86 ; \mathrm{N}, 22.21$. Found: C, 63.78; H, 6.07; N, 22.42.

1-(1H-1,2,3-Benzotriazol-1-yl)-1,3-butanedione (1d): 91\% white prisms; $\mathrm{mp} 69-70^{\circ} \mathrm{C}$ (lit..$^{21} \mathrm{mp} 69{ }^{\circ} \mathrm{C}$), as $2: 1 \mathrm{mixture}$ of tautomers; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 1.53$ ($\mathrm{d}, 1.8 \mathrm{H}, \mathrm{J}=4.1 \mathrm{~Hz}$), 1.67 $(\mathrm{d}, 1.2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 3.81(\mathrm{~d}, 0.6 \mathrm{H}, \mathrm{J}=9.2 \mathrm{~Hz}), 6.44(\mathrm{~s}, 0.6 \mathrm{H})$, $6.87-7.11(\mathrm{~m}, 1.2 \mathrm{H}), 7.72(\mathrm{dd}, 0.4 \mathrm{H}, \mathrm{J}=7.6,0.6 \mathrm{~Hz}), 7.80(\mathrm{~d}$, $0.6 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 8.11-8.12(\mathrm{~m}, 1 \mathrm{H}), 13.29(\mathrm{br} \mathrm{s}, 0.6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 21.6,29.7,50.6,90.6,114.4,114.8,120.3,125.8$, 126.2, 127.7, 128.0, 128.3, 129.9, 130.3, 131.1, 131.4, 146.7, 146.9, 166.1, 169.6, 182.0, 182.1, 199.0.

1-(2-Thiophenoyl)benzotriazole (1f): 89\% colorless needles; mp $175-176{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 7.27(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=3.9 \mathrm{~Hz}$), $7.53(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.68(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 7.88(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{J}=4.8,1.2 \mathrm{~Hz}$) , $8.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 8.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4$ $\mathrm{Hz}), 8.57$ (dd, 1 H , J = 3.9, 1.2 Hz); ${ }^{13} \mathrm{C}$ NMR $\delta 114.8,120.2$, 126.3, 128.1, 130.5, 132.1, 133.4, 137.3, 138.5, 145.8, 159.2. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{C}, 57.63 ; \mathrm{H}, 3.08 ; \mathrm{N}, 18.33$. Found: C, 57.78; H, 3.13; N, 18.39.

1-Acetyl-5,6-dimethylbenzotriazole (1h): 61\% white prisms; mp 97-98 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, 2.97 (s, 3H), $7.80(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 20.4,20.9$, 23.2, 113.9, 119.2, 129.8, 135.8, 140.9, 145.29, 169.6. Anal.

[^5]Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}$: C, 63.48; $\mathrm{H}, 5.86 ; \mathrm{N}, 22.21$. Found: C, 63.26; H, 5.92; N, 22.33.

2,4-Dianilino-3-ethylquinoline (2a): 86\% yellow hexagonal crystals; mp 171-172 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.21$ (t, 3H, J $=7.5$ $\mathrm{Hz}), 2.72(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 5.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}\right.$ exchangeable), 6.62 (s, 1H, $\mathrm{D}_{2} \mathrm{O}$ exchangeable), $6.62(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 6.82$ $(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.13-7.20(\mathrm{~m}$, $3 \mathrm{H}), 7.38(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.67(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.84(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR δ 13.0, 19.6, 115.1, 119.6, 119.7, 121.1, 122.0, 122.2, 123.0, 123.4, 127.4, 128.9, 129.0, 129.3, 140.6, 142.9, 146.0, 146.9, 152.8. Anal. Cal cd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3}$: C, 81.38; H, 6.24; N, 12.38. Found: C, 81.19; H, 6.38; N, 12.40.
6-Methyl- ${ }^{2}, \mathrm{~N}^{4}-$ bis(4-methyphenyl)-3-(1,3,3-trimethyl-butyl)quinoline-2,4-diamine (2b): 83\%, glassy solid; ${ }^{1} \mathrm{H}$ NMR $\delta 0.84(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 1.60(\mathrm{dd}, 1 \mathrm{H}$, J $=5.7,13.2 \mathrm{~Hz}), 1.85(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.7,13.2 \mathrm{~Hz}), 2.27(\mathrm{~s}, 3 \mathrm{H})$, 2.36 (br s, 6H), 3.74 (br s, 1H), 5.48 (br s, 1H), 6.59 (d, 2H, J $=8.2 \mathrm{~Hz}), 6.62(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.18(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}$), $7.34(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.71$ (d, 2H, J $=8.2 \mathrm{~Hz}$), 7.75 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR $\delta 20.5,20.8$, 21.6, 27.2, 29.5, 31.9, 50.4, 115.4, 119.5, 122.1, 126.1, 126.9, $128.8,129.3,129.8,130.8,131.3,132.5,138.2,141.7,144.1$, 145.2, 150.0, 152.8. Anal. Cal cd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{3}$: N, 9.30; Found: N, 9.22
2,4-Di(4-methylphenylamino)-3-ethyl-6-methylquinoline (2c): 76\% yellow needles; mp $165-166{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR δ $1.19(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $2.72(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 5.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1$ $\mathrm{Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.25(\mathrm{~s}$, 1 H), 7.33 (dd, $1 \mathrm{H}, \mathrm{J}=1.7,7.6 \mathrm{~Hz}), 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.70(\mathrm{t}, 3 \mathrm{H}$, $\mathrm{J}=8.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 13.2,19.9,20.7,21.0,21.8,115.5$, 120.0, 120.8, 122.1, 122.4, 127.4, 129.3, 129.6, 130.0, 131.1, 131.8, 132.7, 138.5, 143.1, 143.9, 145.5, 152.8; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} 382.2283$, found 382.2244.

5-Anilino-1,3-diphenylpyrimido[5,4-c]quinoline-2,4(1H,3H)-dione (5a): 66% yell low needles; $\mathrm{mp} 272-273^{\circ} \mathrm{C}$; ${ }^{1 \mathrm{H}}$ NMR $\delta 6.92-6.98(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.21(\mathrm{t}$, $1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.30-7.58(\mathrm{~m}, 15 \mathrm{H}), 11.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 94.1,115.9,122.7,123.5,125.8,126.6,128.2,128.6,128.8$, 129.1, 129.2, 129.3, 129.4, 132.3, 134.7, 136.5, 141.4, 149.9, 150.4, 150.6, 155.2, 165.3. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: N , 12.27. Found: $N, 11.93$.

3-(4-Methylphenyl)-9-methyl-1-(4-methylphenyl)-5-(4-toluidino)[5,4-c]quinoline-2,4(1H,3H)-dione (5b): 68% yellow prisms; mp 229-230 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.98$ (s, 3H), 2.33 (s, 3 H), $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 6.54-6.55(\mathrm{br}, 1 \mathrm{H}), 7.14(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8.4 \mathrm{~Hz}), 7.22-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.33(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.58$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.80(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 11.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 20.9, 21.2, 21.3, 21.4, 97.7, 112.6, 120.6, 125.7, 127.7, $127.9,128.6,129.2,130.1,130.3,130.9,131.9,132.0,134.1$, 137.5, 137.7, 139.2, 148.6, 150.0, 151.1, 151.6, 163.9. Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, $77.32 ; \mathrm{H}, 5.51 ; \mathrm{N}, 10.93$. Found: C, 77.46; H, 5.86; N, 10.91.

5-Anilino-1,3-diphenylpyrimido[4,5-b]quinoline-2,6($\mathbf{1 H}, \mathbf{3 H}$)-dione (6): 86% yellow cubic crystals; $\mathrm{mp} 272-273$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\delta 6.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 6.86(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1$ $\mathrm{Hz}), 7.06-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.61(\mathrm{~m}, 13 \mathrm{H}), 7.73(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $8.4 \mathrm{~Hz}), 7.96(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 11.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR δ $98.2,113.1,120.8,120.9,122.1,123.1,126.4,128.3,128.4$, 128.9, 129.0, 129.2, 129.4, 129.5, 129.9, 132.5, 134.7, 140.1, 140.4, 149.3, 151.8, 152.1, 163.9. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 76.30; H, 4.42; N, 12.27. Found: C, 74.67; H, 4.31; N, 11.94.
1,3,6-Triphenyl-2-(phenylimino)-2,3-dihydro-1H-benzo-[b]pyrimido[4,5,6-de][1,8] naphthyridin-5(6H)-one (7): 78\% yell ow block crystals; mp 290-291 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.29$ (s, 1H), $7.03-7.67(\mathrm{~m}, 21 \mathrm{H}), 7.79(\mathrm{ss}, 1 \mathrm{H}, \mathrm{J}=8.7,0.9 \mathrm{~Hz}), 7.90(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{~J}=1.2 \mathrm{~Hz}), 12.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 100.5$, 117.7, 121.8, 122.5, 123.3, 123.7, 125.4, 126.8, 127.2, 128.2, $128.3,129.1,129.5,129.6,130.8,132.2,138.5,142.5,144.0$, 148.1, 148.5,152.5, 153.0,154.6, 166.3; HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{25}-$ $\mathrm{N}_{5} \mathrm{O}_{2}$ 556.2153, found 556.2137. Anal. Cal cd for $\mathrm{C}_{37} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{2}$: N, 12.60. Found: N, 12.36.
N-(4-Methoxyphenyl)-6-phenanthridinamine (12): 82\% yellow needles; mp $165-166^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\delta 3.81$ (s, 3H), 6.93
$(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.53-$ 7.52 (m, 2H), 7.73-7.83 (m, 4H), $7.94(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.34$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 8.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\delta 55.5$, 114.1, 119.5, 121.7, 122.2, 122.9, 123.3, 127.1, 127.6, 128.8, 130.2, 133.4, 134.2, 151.3, 155.4. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$: C, 79.98; H, 5.37; N, 9.33. Found: C, 79.74; H, 5.58; N, 9.36.

N,N'-Bis(4-methylphenyl)-N-thieno[2,3-c]quinolin-4ylurea (14): 43% yellow needles; mp 172-173 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR δ $2.61(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 7.31(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.6,4.8 \mathrm{~Hz}), 7.46$ $(\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.54(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.61(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}$ $=5.1,1.6 \mathrm{~Hz}), 7.71(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.96-8.04(\mathrm{~m}, 5 \mathrm{H})$, 8.14 (dd, $1 \mathrm{H}, \mathrm{J}=1.2,2.4 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR $\delta 20.9,21.3,113.9$, 119.1, 121.0, 125.2, 127.8, 128.4, 129.4, 130.9, 133.2, 133.5, 133.7, 135.4, 136.1, 137.1, 139.8, 148.3, 157.3. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{OS}: \mathrm{N}, 9.92$. Found: $\mathrm{N}, 10.22$.

N-1,1-Diphenyl-6H-indolo[2,3-b]quinoline-6-carboxamide (15): 59% yellow needles; mp $189-190^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR δ $6.87(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 7.05(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 7.16(\mathrm{t}, 1 \mathrm{H}$, $\mathrm{J}=7.2 \mathrm{~Hz}), 7.40-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.66-7.75$ $(\mathrm{m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.82 \mathrm{~Hz}), 8.12(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz})$, 8.79 (d, 1H, J $=8.1 \mathrm{~Hz}$), 13.1 (br s, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 116.9$, 117.6, 120.2, 121.7, 122.3, 123.0, 123.8, 125.0, 125.1, 126.3, 127.5, 128.9, 129.0, 129.1, 129.2, 129.6, 135.3, 138.4, 140.5, 143.3, 144.0, $150.5,150.8$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}: \mathrm{N}, 10.16$. Found: N, 10.10.

X-ray Crystallography. The crystal data, data collection,
and refinement parameters for the six structures are listed in Table S1. Data were collected with a Siemens SMART CCD area detector, using graphitemonochromatized Mo K α radiation ($\lambda=0.71073 \AA$). The structures were solved by direct methods using SHELXS ${ }^{22}$ and refined on F^{2}, using all data, by full-matrix least-squares procedures with SHELXTL. ${ }^{23} \mathrm{CH}$ hydrogen atoms were included in calculated positions with isotropic displacement parameters 1.2 times the isotropic equivalent of their carrier atoms, while the NH hydrogens were located from difference Fourier syntheses and their positions refined. The functions minimized were $\sum \mathrm{w}\left(\mathrm{F}_{0}{ }^{2}-\right.$ $\left.\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$, with $\mathrm{w}=\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(\mathrm{aP})^{2}+\mathrm{bP}\right]^{-1}$, where $\mathrm{P}=\left[\max \left(\mathrm{F}_{\mathrm{o}}\right)^{2}\right.$ $\left.+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right] / 3$.

Supporting Information Available: Perspective views (Figures S1-S5), crystal data, data collection and refinement parameters, full tables of atom coordinates, bond lengths and angles, and thermal displacement parameters (Tables S1-S25) for X-ray crystal structures of $\mathbf{2 a}, \mathbf{5 a}, \mathbf{b}, \mathbf{6}, \mathbf{1 2}$, and $\mathbf{1 5}$. This material is available free of charge via the Internet at http://pubs.acs.org.

J O0009604

[^6]
[^0]: (1) (a) Sheehan, J. C.; Daves, G. D., J r. J . Org. Chem. 1965, 30, 3247 (b) Merault, G.; Bourgeois, P.; Duffaut, N. Bull. Soc. Chim. Fr. 1974, 1949. (c) Ohtsuka, Y. J. Org. Chem. 1978, 43, 3231. (d) Shindo, H.; Fujishita, T.; Sasatani, T.; Chomei, N.; Takada, S. Heterocycles 1989, 29, 899. (e) Palacios, F.; Aparicio, D.; Garcia, J . Tetrahedron 1997, 53, 2931. (f) Molina, P.; Alcantara, J.; Lopez-Leonardo, C. Tetrahedron 1997, 53, 3281. (g) Shi, C.; Zhang, Q.; Wang, K. K. J . Org. Chem. 1999, 64, 925.
 (2) (a) Minami, T.; Ohshiro, Y.; Agawa, T. J Org. Chem. 1974, 39, 3516. (b) Yamamoto, I.; Furukawa, T.; Nakajima, H.; Gotoh, H. J . Chem. Soc., Perkin Trans. 1 1976, 1597.
 (3) Argabright, P. A.; Phillips, B. L. J . Heterocycl. Chem. 1970, 7, 725.
 (4) Bruche, L.; Garanti, L.; Zecchi, G. J . Chem. Soc., Perkin Trans. 1 1986, 2177.
 (5) (a) Behrend, R.; Meyer, F. C.; Buchholz, Y. Liebigs Ann. Chem. 1901, 314, 200. (b) Capuano, L.; Boschat, P.; Heyer, H. W.; Wachter, G. Chem. Ber. 1973, 106, 312.
 (6) Ozaki, S.; Nagase, T.; K ato, T. Heterocycles 1988, 27, 2063.
 (7) (a) Huisgen, R.; Grashey, R.; Knupfer, H.; Kunz, R.; Seidel, M. Chem. Ber. 1964, 97, 1085. (b) Capuano, L.; Bronder, M.; Djokar, K.; Muller, I. Chem. Ber. 1980, 113, 395.

[^1]: (8) Toth, G.; K ovacs, A.; Bitter, I.; Duddeck, H. Liebigs Ann. Chem 1991, 1215.
 (9) (a) Pedersen, E. B. Acta Chem. Scand. 1976, B30, 133. (b) Pedersen, E. B. Tetrahedron 1977, 33, 217.

[^2]: (10) (a) Kulagowski, J . J.; Moody, C. J.; Rees, C. W. J. Chem. Soc., Perkin Trans. 1 1985, 2725. (b) Barker, S. J.; J ones, G. B.; Randles, K. R.; Storr, R. C. Tetrahedron Lett. 1988, 29, 953. (c) Katritzky, A. R.; Lan, X.; Lam, J. N. Chem. Ber. 1991, 124, 1431. (d) Katritzky, A. R.; Yang, B. J . Heterocycl. Chem. 1996, 33, 607. (e) Katritzky, A. R.; Du, W.; Matsukawa, Y.; Ghiviriga, I.; Denisenko, S. N. J . Heterocycl. Chem. 1999, 36, 927.
 (11) Katritzky, A. R.; Soleiman M.; Yang, B. Heteroatom Chem. 1996, 7, 367.
 (12) The formation of carbodiimide was suggested by the side products isolated-the corresponding amides and a carbodiimide dimer. Previous publications report reaction of carbodiimide with aryl isocyanate to form 2-imino-1,3-diazetan-4-ones: (a) Ulrich, H.; Richter, R.; Tucker, B. J. Heterocyclic Chem. 1987, 24, 1121. (b) Farrissey, W. J., J r.; Ricciardi, R. J.; Sayigh, A. A. R. J. Org. Chem. 1968, 33, 1913. (c) Neidlein, R. Archiv. Pharm. 1964, 297, 623.
 (13) In unpublished work, treatment of 4-quinolone with p-tolyl isocyanate under similar conditions gave 4-p-tolylaminoquinoline in 71\% yield.
 (14) (a) Katritzky, A. R.; Rachwal, S.; Offerman, R. J.; Najzarek, Z.; Y agoub, A. K.; Zhang, Y. Chem. Ber. 1990, 123, 1545. (b) K atritzky, A. R.; Stevens, C. V.; Zhang, G.-F .; J iang, J .; Kimpe, N. Heterocycles 1995, 40, 231.

[^3]: (15) Saito, T.; Nakane, M.; Miyazaki, T.; M otoki, S. J. Chem. Soc., Perkin Trans. 1 1989, 2140.
 (16) Molina, P.; Alcantara, J.; Lopez-Leonardo, C. Tetrahedron 1997, 53, 3281.

[^4]: (17) Meth-Cohn, O.; Tarnowski, B. Tetrahedron Lett. 1980, 21, 3721
 (18) (a) Saito, T.; Ohmori, H.; Ohkubo, T.; M otoki, S. J. Chem. Soc., Chem. Commun. 1993, 24, 1802. (b) Schmittel, M.; Steffen, J.-P. Engels, B.; Lennartz, C.; Hanrath, M. Angew. Chem., Int. Ed. Engl. 1998, 37, 2371.

[^5]: (19) (a) Kreutzberger, A.; Dietz, E.; Tetrahedron Lett. 1970, 1457. (b) K atritzky, A. R.; Pastor, A.; Voronkov, M. J . Heterocyd. Chem. 1999, 36, 777.
 (20) Katritzky, A. R.; Shobana, N.; Pernak, J .; Afridi, A. S.; Fan, W.-Q. Tetrahedron 1992, 48, 7817.
 (21) K atritzky, A. R.; Rachwal, S.; Rachwal, B. J. Chem. Soc., Perkin Trans. 1 1990, 1717.

[^6]: (22) Sheldrick, G. M. Acta Crystallogr., Sect. A 1990, 46, 467.
 (23) Sheldrick, G. M. SHELXTL, Bruker Analytical X-ray Systems, 1997.

